HOSE & HOSE PROTECION GAUGES PIPE FITTINGS/ VALVES HOSES SHEET RUBBER FIRE PROTECTION COUPLINGS **DISCLAIMERS** # **TERMS OF SALE** #### TERMS: 1/2% 10 Days, net 30 Days #### FREIGHT: All shipments are made FOB Seal Fast Inc. or Point of Manufacturer. (Applies to shipments from Houston Warehouse Only) Freight prepaid on 1000 net couplings and accessories, \$1500 Net Couplings, PVC Tubing, Braided Tubing and Fire Hose. Freight prepaid on \$3000 Net Couplings, Rubber Hose, PVC Hose and Sheet Rubber with the exclusion of all PVC Suction including 6" and 8" PVC Suction ONLY orders. If combined with other items freight is prepaid at \$3000 Net, otherwise these items will Not be applied toward prepaid freight. Effective immediately, regardless of invoice value, all uncoupled cut lengths of hoses are shipped FOB Seal Fast Inc. Seal Fast Inc. reserves the right to determine the most Economical shipping method on all prepaid shipments. In addition, Seal Fast Inc. reserves the right to refuse any prepaid shipments exceeding 6% freight cost of the order unless items are added or subtracted to keep said freight cost at or below 6%. Applies to Continental United States, excluding Alaska and Hawaii. Any evidence of shortage must be reported to Seal Fast Inc. within 10 days. Any Damage to hose/hoses, etc. customer is responsible for filing a claim with the delivery carrier within 10 days. Seal Fast Inc. will not issue credit. ALL UPS prepay and add or collect shipments will endure a \$7.50 shipping and handling fee including All backorders. All drop shipments will endure a \$5.00 fee. #### WARRANTY: Products are warranted against defects in workmanship and defects in material. Products having such defects will be replaced or credited as Seal Fast elects. Liability is limited to the invoice value of the defective item. Our responsibility shall not exceed the original purchase price of the defective product. In any event, Seal Fast, Inc. shall not be held responsible for any special or consequential damages. ## **RETURNED GOODS:** If for any reason you wish to return goods, please contact Seal Fast Inc. for prior authorization number. Goods must be returned within 30 days and must be in new and resaleable condition. Minimum handling charge is 15%. All discrepancies in shipment *l* invoice must be reported within 10 days of receipt of goods. #### PROMPTPAYMENT: Orders receive preferred treatment when the account is paid promptly. Orders may be held up if any unpaid invoice exceeds 30 days. ## **MINIMUM INVOICE:** All invoices are subject to a minimum billing charge of 50.00 net. Returned checks are subject to a \$25.00 service charge. #### **GENERAL:** Orders will be accepted subject to delays caused by accident, strike, fire or other causes beyond the control of the seller including failure of seller's suppliers to deliver. Prices, discounts and other specifications are subject to change without notice. All prices are subject to any applicable taxes imposed. The possessions of this price schedule is not to be construed as an offer to sell at the prices shown. Special price for volume quotes will be accepted in writing only. ## PLEASE NOTE: Extra care is taken in the preparation of this literature but Seal Fast, Inc. is not responsible for any inadvertent typographical errors or omissions. ## STOCKING WAREHOUSES SEAL FAST, INC. 5603 Harvey Wilson Dr. Houston, TX 77020 (713) 675-6324 or 800-231-0734 | FAX (713) 675-0146 or 800-681-1515 | E-mail sales@sealfast.com ## PORTER ASSOCIATES 1150 Boot Road Unit 1 Downingtown, PA 19335 (610) 518-2301 # **ASPEN MARKETING, INC** 5160 Fox Street Denver, CO 80216 (303) 455-8175 (303) 477-6504 Fax ## THE WAGNER GROUP 125 State St. P O Box 1683 Elkhart, IN 46516 (574) 294-2769 (574) 522-2083 Fax # **DISCLAIMERS** # **Product Images** - Seal Fast makes every reasonable effort to show accurate product representation, however pictures are for reference only, and do not necessarily reflect the exact product you will receive. - Seal Fast reserves the right to alter product appearance without notice. Some product features shown in pictures may no longer be available. # **Product Specifications** - Seal Fast is continuously working to provide the best quality for the best price. - We reserve the right to alter product specifications without notice. # **Product Usage** - Our Sales Team will do their best to assist in choosing the best product for a particular application. However, it is ultimately the customer's responsibility to determine the correct product for the correct application. - Seal Fast will not be held liable for the abuse or misuse of our products in a manner in which they are not designed. - Seal Fast cannot guarantee the integrity of an assembly if other manufacturers parts are used. # **Product Availability** • Seal Fast reserves the right to discontinue products at any time without prior notice. ## **Product Pricing** - Seal Fast is constantly doing our best to maintain pricing levels. However, circumstances change and while many prices go down, others will increase. - Please contact your sales associate for current pricing. Local: (713) 675-6324 II National: (800) 231-0734 Local: (713) 675-6324 III National: (800) 231-0734 | Detail | ls | | Nylon | | |--------------------|-----------------|------------------|------------------|--------------| | "A" = Outside Flat | "B" = Normal ID | Part # - 100 ft. | Part # - 300 ft. | List Per ft. | | 1.19" | 0.71" | NPS071-100 | NPS071-300 | | | 1.25" | 0.77" | NPS077-100 | NPS077-300 | | | 1.50" | 0.90" | NPS090-100 | NPS090-300 | | | 1.50" | 0.91" | NPS091-100 | NPS091-300 | | | 1.66" | 1.00" | NPS100-100 | NPS100-300 | | | 1.72" | 1.06" | NPS106-100 | NPS106-300 | | | 1.88" | 1.14" | NPS114-100 | NPS114-300 | | | 2.03" | 1.25" | NPS125-100 | NPS125-300 | | | 2.13" | 1.30" | NPS130-100 | NPS130-300 | | | 2.25" | 1.38" | NPS138-100 | NPS138-300 | | | 2.29" | 1.42" | NPS142-100 | NPS142-300 | | | 2.50" | 1.53" | NPS153-100 | NPS153-300 | | | 2.56" | 1.59" | NPS159-100 | NPS159-300 | | | 2.81" | 1.75" | NPS175-100 | NPS175-300 | | | 3.00" | 1.85" | NPS185-100 | NPS185-300 | | | 3.31" | 2.07" | NPS207-100 | NPS207-300 | | | 3.33" | 2.09" | NPS209-100 | NPS209-300 | | | 3.63" | 2.25" | NPS225-100 | NPS225-300 | | | 3.81" | 2.38" | NPS238-100 | NPS238-300 | | | 4.25" | 2.64" | NPS264-100 | NPS264-300 | | | 4.75" | 2.96" | NPS296-100 | NPS296-300 | | | 5.31" | 3.34" | NPS334-100 | NPS334-300 | | | 5.81" | 3.66" | NPS366-100 | NPS366-300 | | 2 #### Pecommendations - Use band clamps or nylon cable ties to secure sleeve - Heat treat cut ends to prevent fraying - If hose has fittings installed a larger diameter sleeve may be required #### Renefits - Excellent protection for hoses from abrasion and cuts - Useful for bundling 2 or more hoses - Provides protection to operators of equipment from hydraulic fluids in the event of hose failures - Reduces downtime by extending life cycles of hoses - Easy to install allows rubber hose to move freely inside sleeve - Can be applied over cables, chains, or springs to protect paint finishes | | Details | | | Polyethylene | | |--------|---------|-----------------|----------------|-----------------|--------------| | Size | Length | Hose O.D. Range | Black - Part # | Yellow - Part # | List Per ft. | | 1/2" | 165' | .55 to .78 | SHP050B | SHP050Y | | | 5/8" | 165' | .75 to .95 | SHP058B | SHP058Y | | | 3/4" | 165' | .86 to 1.18 | SHP075B | SHP075Y | | | 1" | 165' | 1.18 to 1.49 | SHP100B | SHP100Y | | | 1-1/4" | 165' | 1.3/8 to 1.75 | SHP125B | SHP125Y | | | 1-1/2" | 66' | 1.75 to 2.38 | SHP150B | SHP150Y | | | 2" | 66' | 2.25 to 2.75 | SHP200B | SHP200Y | | | 2-1/2" | 66' | 3.5 to 3.25 | SHP250B | SHP250Y | | | 3" | 66' | 3.14 to 3.85 | SHP300B | SHP300Y | | | 4" | 39' | 3.75 to .45 | SHP400B | SHP400Y | | | 6" | 33' | 4.5 to 6 | SHP600B | SHP600Y | | ## **BEND RESTRICTORS** ## **FEATURES** - Tapered design reduces bendin stress near the hose coupling junction, thereby preventing damage & extending the life of the hose. The upper lip firmly attaches to the coupling, holding the restrictor in place & eliminating the use o costly adhesives or clamps. - Designed to extend the life of variety of hydraulic & pressure washer hoses. | | | EPDM | l Rubber | | | |------|-------|-------|----------|--------|----------| | Size | Α | В | С | Part # | List ft. | | 1/4" | 0.67" | 0.76" | 5.74" | HB 40 | | | 3/8" | 0.75" | 0.85" | 6.43" | HB 60 | | | 1/2" | 0.82" | 0.93" | 6.93" | HB 80 | | | , | | | | | | # **HOSE PROTECTION** # **FIRE SLEEVES** • Temp Range: +1000° • Reinforcement: • Safety Factor: • Cover: • Tube: ш M Ш Fiberglass 100' 100' 100' 100' 100' 100' 100' 100' 100' 4" 100' FSL64 2-1/2" 100' 3-1/2" 100' OD Part # List ft. FSL4 FSL6 FSL8 FSL10 FSL12 FSL14 FSL16 FSL20 FSL24 FSL32 FSL40 FSL48 FSL56 # **HOSE PROTECTION** HOSES # FIBERGLASS SLEEVING **FEATURES** - Braided texturized fiberglass tubing provides thermal insulation protection. The untreated tubing is flexible & expands to cover changing diameters. - Color: White # **SILICONE COATED FIRE JACKETS** | | Silico | ne Co | ated Fib | erglass | |---|--------|-------|----------|----------| | | ID | OD | Part # | List ft. | | | 1/4" | 50' | FJ4 | | | FEATURES | 3/8" | 50' | FJ6 | | | Silicone rubber coated fiberglass | 1/2" | 50' | FJ8 | | | sleeve protects hoses, cables & wire from molten metal splash, | 5/8" | 50' | FJ10 | | | high heat hazards & occasional exposure to flame. Resistant to | 3/4" | 50' | FJ12 | | | hydraulic fluids, fuels & lubricating | 7/8" | 50' | FJ14 | | | oils & sheds molten metal splash.
Reduces energy loss & offers | 1" | 50' | FJ16 | | | personnel burn protection through | 1-1/4" | 50' | FJ20 | | | insulating hot oil, steam lines or pipe surfaces. Allows the bundling | 1-1/2" | 50' | FJ24 | | | of cables, hoses & wires while providing excellent thermal & | 1-3/4" | 50' | FJ28 | | | abrasion resistance. | 2" | 50' | FJ32 | | | High bulk braided fiberglass | 2-1/2" | 50' | FJ40 | | | sleeving & coated with a custom compounded silicone rubber | 3" | 50' | FJ48 | | | designed to form a protective | 4" | 50' | FJ64 | | | barrier. | | | | | • Temp Range: -65° F to +500° F • Tube: • Safety Factor: # **FIRE TAPE** HOSES | Л | | | | |---|--|--|--| | | | | | | | | | | | | | | | | 2 | # **TECHNICAL DATA** ## CORROSION RESISTANCE OF COUPLING MATERIALS **CAUTION:** The following data has been compiled from generally available sources end should not be relied upon without consulting and following the specific recommendations of the manufacturer regarding particular coupling materials. | RATINGS: 1. Excellent 3. Fair Condition | nal | | | | | | J. | | | |---|---------------------|----------|---------------|--------------|--------------|----------------------------|------------------------------------|---------------|-------| | 2. Good x. Not Satisfacto | | NOTES: N | o rationg ind | dicates no d | data availat | ole | | | | | AGENT | Mall. From
Steel | Brass | Bronze | Aluminum | Glass | Stainless
410, 416, 430 | Stainless
302, 202, 304,
308 | Stainless 316 | Monel | | Acetate, Solvents, Crude | | 3 | | | | 2 | 1 | 1 | 2 | | Acetate, Solvents, Pure | | 1 | 1 | 1 | | 1 | 1 | 1 | 1 | | Acetic Acid | Х | Х | Χ | 2 | 1 | Х | 2 | 2 | 2 | | Acetic Acid Vapor | X | Χ | | 3 | | Χ | 2 | 2 | 3 | | Acetic Anhydride | Х | X | | 2 | | X | 2 | 2 | 2 | | Acetone | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | Acetylene | 1 | 2 | | 1 | | 1 | 1 | 1 | 2 | | Alcohols | 1 | 2 | _ | 1 | | 1 | 1 | 1 | 1 | | Aluminum Sulfate | X | 3 | 3 | 3 | 1 | X | 3 | 2 | 2 | | Alums | X | 3 | 2 | 3 | 1 | X | 3 | 2 | 2 | | Ammonia Gas | 1 | X | 3 | 1 | 3 | 1 | 1 | 1 | X | | Ammonium Chloride | 1 | 3 | | 1* | | 3 | 3 | 1 | 1 | | Ammonium Hydroxide Ammonium Nitrate | 2 | X | | 2 | | 1 | 1 | 1 | 3 | | Ammonium Phosphate (Ammoniacal) | 1 | X | | 2 | | 1 | 1 | 1 | 2 | | Ammonium Phosphate (Neutral) | | 3 | | | | 1 | 1 | 1 | 2 | | Ammonium Phosphate (Acid) | | 3 | | | | 3 | 2 | 1 | 2 | | Ammonium Sulfate | 1 | 3 | | | | 2 | 1 | 1 | 2 | | Asphalt | 1 | 2 | | | | 2 | 1 | 1 | 1 | | Beer | 2 | 2 | 1 | 1 | | X | 1 | 1 | 1 | | Beet SugarLiquors | 1 | 2 | _ | 1 | | 2 | 1 | 1 | 1 | | Benzene, Benzol | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | Benzine (petroleum-naphtha) | 1 | 1 | _ | 1 | _ | 1 | 1 | 1 | 1 | | Borax | 2 | 2 | | | | 1 | 1 | 1 | 1 | | Boric Acid | Х | 3 | | 1 | | 3 | 2 | 1 | 1 | | Butane, Butylene | 1 | 1 | 1 | 1 | | 1 | 1 | 1 | 1 | | Butadiene | | 1 | | | | 1 | 1 | 1 | 1 | | Calcium Bisulfate | | X | | | | Χ | 2 | 1 | Χ | | Calcium Hypochlorite | 3 | 3 | 3 | Χ | 3 | X | 3 | 2 | 3 | | Cane Sugar Liquors | 1 | 2 | | 1 | | 2 | 1 | 1 | 1 | | Carbon Dioxide (Dry) | 1 | 1 | | 1 | | 1 | 1 | 1 | 1 | | Carbon Dioxide (Wet & Aqueous Sol) | 2 | 3 | | 2 | | 2 | 1 | 1 | 2 | | Carbon Disulfide | 2 | 3 | | 2 | | 2 | 1 | 1 | 3 | | Carbon Tetrachloride | 3 | 1 | 2 | 3 | 1 | 1 | 1 | 1 | 1 | | Chlorine (Dry) | 2 | 2 | 2 | 1 | 2 | 2 | 2 | 2 | 1 | | Chlorine (Wet) | X | Χ | 3 | Χ | 2 | Χ | Χ | 3 | 3 | | Chromic Acid | | X | Χ | X | 1 | 3 | 2 | 2 | 3 | | Citric Acid | X | 3 | | 1 | | 3 | X | 1 | 2 | | Coke Oven Gas | 1 | 3 | | 2 | | 1 | 1 | 1 | 2 | | Copper Sulfate | X | X | 1 | Χ | | 1 | 1 | 1 | 3 | | Core Oils | 1 | 1 | 1 | 1 | | 1 | 1 | 1 | 1 | | Cottonseed Oil | 1 | 1 | 1 | 1 | | 1 | 1 | 1 | 1 | | Creosote Ethers | 2 | 3 | | 1 | | 1 | 1 | 1 | 1 | | Ethers Ethylene Glycol | 2 | 2 | | 1 | | 1 | 1 | 1 | 1 | | Ferric Chloride | X | X | X | X | 1 | X | X | X | X | | Ferric Sulfate | X | X | ^ | X | Τ | 1 | 1 | 1 | 3 | | Formaldehyde | 2 | 2 | | 2 | | 1 | 1 | 1 | 1 | | - Tormalucity uc | _ | _ | | _ | | 1 | _ | 4 | _ | *3 to X at high temperatures. Local: (713) 675-6324 Chemical Chart is reprinted from 1996 RMA Hose Handbook National: (800) 231-0734 ## **CORROSION RESISTANCE OF COUPLING MATERIALS** **CAUTION:** The following data has been compiled from generally available sources end should not be relied upon without consulting and following the specific recommendations of the manufacturer regarding particular coupling materials. | RATINGS: 1. Excellent 3. Fair Conditional | NO | | | | ta available | nateriais. | | | | |---|---------------------|----------|-------------|------------|--------------|----------------------------|------------------------------------|---------------|-------| | 2. Good x. Not Satisfactory | INO | TES. NOT | ationy muic | ales no ua | la avaliable | | | | | | AGENT | Mall. From
Steel | Brass | Bronze | Aluminum | Glass | Stainless
410, 416, 430 | Stainless
302, 202, 304,
308 | Stainless 316 | Monel | | Formic Acid | X | 2 | | Х | | Х | 2 | 1 | 2 | | Freon | 3 | 1 | 1 | 1 | | 1 | 1 | 1 | 1 | | Furfural | 1 | 2 | | 1 | | 1 | 1 | 1 | 1 | | Gasoline (Sour) | 3 | 3 | | 3 | | 3 | 1 | 1 | Χ | | Gasoline (Refined) | 1 | 1 | 1 | 1 | | 1 | 1 | 1 | 1 | | Gelatin | 1 | 3 | | 1 | | 1 | 1 | 1 | 1 | | Glucose | 1 | 1 | | 1 | | 1 | 1 | 1 | 1 | | Glue | 1 | 3 | | 1 | | 1 | 1 | 1 | 1 | | Glycerine or Glycerol | 1 | 2 | | 1 | | 1 | 1 | 1 | 1 | | Hydrochloric Acid | X | X | Χ | X | 1 | X | X | X | X | | Hydrocyanic Acid | 3 | X | 0 | 1 | | 3 | 1 | 1 | 2 | | Hydrofluoric Acid | Χ | 3 | 3 | Χ | X | X | X | X | X | | Hydrogen Fluoride | 1 | 3 | | 4 | | X | X | 3 | 1 | | Hydrogen | 1 | | | 1 | | 1 | 1 | 1 | | | Hyrogen Peroxide | X | X | | 1 | | 1 | 2 | 1 | 2 | | Hydrogen Sulfide (Dry) | 3 | 3 | | 2 | | 3 | 2 | 1 | | | Hydrogen Sulfide (Wet) Lacquers and Lacquer Solvents | 3 | 2 | | 2 | | 3 | 2 | 1 | 3 | | Lacquers and Lacquer Solvents Lactic Acid | X | 2 | | 3 | | Т | 3 | 2 | 1 | | Lime-Sulfur | 2 | X | | 2 | | 1 | 1 | 2 | Т. | | Linseed Oil | 1 | 1 | | 1 | | Τ. | 1 | 1 | 1 | | Magnesium Chloride | 3 | 3 | | X | | 3 | 2 | 1 | 1 | | Magnesium Hydroxide | 1 | 2 | | X | | 1 | 1 | 1 | 1 | | Magnesium Sulfate | 2 | 2 | | 3 | | 1 | 1 | 1 | 1 | | Mercuric Chloride | 3 | X | | X | | X | X | 3 | X | | Mercury | 1 | X | | X | | 1 | 1 | 1 | 2 | | Milk | 3 | 3 | | 1 | | 2 | 1 | 1 | 3 | | Molasses | 2 | X | | 2 | | 2 | 1 | 1 | 1 | | Natural Gas | 1 | 2 | | 1 | | 1 | 1 | 1 | 1 | | Nickel Chloride | | Χ | | Χ | | Χ | 3 | 2 | 2 | | Nickel Sulfate | | 3 | | X | | 3 | 2 | 1 | 1 | | Nitric Acid | X | X | X | 3 | 1 | 2 | 2 | 2 | Χ | | Oleic Acid | 2 | 3 | | 1 | | 2 | 2 | 1 | 1 | | Oxalic Acid | 3 | 3 | | 2 | | 3 | 2 | 1 | 1 | | Oxygen | 1 | 1 | 1 | 1 | | 1 | 1 | 1 | 1 | | Palmitic Acid | 1 | 3 | | 1 | | 2 | 2 | 1 | 1 | | Petroleum Oils (Sour) | | 3 | | | | 3 | 1 | 1 | Χ | | Petroleum Oils (Refined) | 1 | 1 | 1 | 1 | | 1 | 1 | 1 | 1 | | Phosphoric Acid 25% | 3 | X | | 3 | 3 | Χ | 3 | 1 | 2 | | Phosphoric Acid 25-50% | Χ | Χ | | Χ | 3 | Χ | Χ | 2 | 2 | | Phosphoric Acid 50-85% | Χ | X | | Χ | Χ | Χ | Χ | 2 | 2 | | Picric Acid | 3 | Χ | | 3 | | 2 | 1 | 1 | Χ | | Potassium Chloride | 2 | 3 | | 3 | | 3 | 2 | 1 | 1 | | Potassium Hydroxide | 3 | Χ | | Χ | | 1 | 1 | 1 | 1 | | Potassium Sulfate | 2 | 2 | | 1 | | 1 | 1 | 1 | 1 | | Propane | 1 | 1 | | | | 1 | 1 | 1 | 1 | | Rosin (Dark) | 1 | 2 | | | 1 | 1 | 1 | 1 | 1 | | Rosin (Light) | | Χ | | 1 | | 1 | 1 | 1 | 2 | *3 to X at high temperatures. Local: (713) 675-6324 Chemical Chart is reprinted from 1996 RMA Hose Handbook 7 National: (800) 231-0734 ### CORROSION RESISTANCE OF COUPLING MATERIALS **CAUTION:** The following data has been compiled from generally available sources end should not be relied upon without consulting and following the specific recommendations of the manufacturer regarding particular coupling materials. | RATINGS: 1. Excellent 2. Good x. Not Satisfac | onal | NOTES: N | | | | | | | | |---|---------------------|----------|--------|----------|-------|----------------------------|------------------------------------|---------------|-------| | AGENT | Mall. From
Steel | Brass | Bronze | Aluminum | Glass | Stainless
410, 416, 430 | Stainless
302, 202, 304,
308 | Stainless 316 | Monel | | Shellac | | 2 | | 2 | | 1 | 1 | 1 | 1 | | Sludge Acid | | Χ | | | | X | Χ | 3 | 2 | | Soda Ash (Sodium Carbonate) | 1 | 2 | | X | | 1 | 1 | 1 | 1 | | Sodium Bicarbonate | 3 | 1 | | X | | 1 | 1 | 1 | 1 | | Sodium Bisulfate | X | 3 | | 3 | | Χ | 1 | 1 | 1 | | Sodium Chloride | 2 | 3 | 2 | Χ | 1 | 3 | 2 | 1 | 1 | | Sodium Cyanide | 2 | X | | X | | 1 | 1 | 1 | 2 | | Sodium Hydroxide | 3 | Χ | 3 | Χ | Χ | 2 | 2 | 2 | 1 | | Sodium Hypochlorite | X | Χ | | Χ | | Χ | 3 | 2 | 3 | | Sodium Metaphosphate | X | 3 | | 1 | | 2 | 1 | 1 | 1 | | Sodium Nitrate | 1 | 3 | | 1 | | 1 | 1 | 1 | 1 | | Sodium Perborate | 3 | 3 | | 1 | | 1 | 1 | 1 | 1 | | Sodium Peroxide | 3 | 3 | | 1 | | 1 | 1 | 1 | 1 | | Sodium Phosphate (Alkaline) | | 3 | | | | 1 | 1 | 1 | 1 | | Sodium Phosphate (Neutral) | | 2 | | | | 1 | 1 | 1 | 1 | | Sodium Phosphate (Acid) | | 2 | | | | Χ | 2 | 1 | 1 | | Sodium Silicate | 1 | 3 | | Χ | | 1 | 1 | 1 | 1 | | Sodium Sulfate | 1 | 2 | | 3 | | 1 | 1 | 1 | 1 | | Sodium Sulfide | 1 | X | | | | 1 | 1 | 1 | 2 | | Sodium Thiosulfate (Hypo) | 3 | Χ | | Χ | | 1 | 1 | 1 | 2 | | Stearic Acid | 3 | 3 | | 3 | | 2 | 2 | 1 | 1 | | Sulfate Liquors | | Χ | | | | 1 | 1 | 1 | 2 | | Sulfur | 2 | Χ | | 2 | | 2 | 2 | 1 | 3 | | Sulfur Chloride | X | Χ | | | | Χ | 3 | 2 | 2 | | Sulfur Dioxide (Dry) | 2 | 1 | | 1 | | 1 | 1 | 1 | 1 | | Sulfur Dioxide (Wet) | | X | | | | Χ | 2 | 1 | Χ | | Sulfuric Acid 10% | X | Χ | 3 | 3 | | Χ | Χ | 2 | 2 | | Sulfuric Acid 10-75% | X | Χ | Χ | Χ | | Χ | Χ | Χ | 2 | | Sulfuric Acid 75-95% | 3 | Χ | X | Х | | 3 | 3 | 2 | 3 | | Sulfuric Acid 95% | 2 | Χ | Χ | | | 2 | 2 | 2 | Χ | | Surlfurous Acid | X | Χ | | Х | | Χ | 3 | 2 | Χ | | Tannic Acid | 3 | 3 | 1 | Χ | | | 1 | 1 | 1 | | Tar | 1 | 2 | | 1 | | 2 | 1 | 1 | 1 | | Toluene, Toluol | 1 | 1 | | 1 | | 1 | 1 | 1 | 1 | | Trichlorethylene | 3 | 1 | | 3 | | 1 | 1 | 1 | 1 | | Turpentine | | 3 | | 1 | | 3 | 1 | 1 | 1 | | Varnish | 2 | 2 | | | | 1 | 1 | 1 | 1 | | Vegetable Oils | 1 | 2 | | 1 | | 1 | 1 | 1 | 1 | | Vinegar | 3 | 3 | | 3 | | 3 | 2 | 1 | 2 | | Water (Acid Mine Water) | 3 | Χ | | 3 | | 2 | 1 | 1 | 3 | | Water (Fresh) | 3 | 1 | | 1 | | 1 | 1 | 1 | 1 | | Water (Salt) | 3 | 3 | 2 | X | | 3 | 2 | 2 | 1 | | Whiskey | X | 2 | | | | 3 | 1 | 1 | 2 | | Wines | X | 2 | | | | 3 | 1 | 1 | 2 | | Xylene, Xylol | 2 | 1 | | 1 | | 1 | 1 | 1 | 1 | | Zinc Chloride | X | X | | Χ | | 3 | 2 | 1 | 1 | | Zinc Sulfate | 3 | 3 | | 3 | | 3 | 2 | 1 | 1 | *3 to X at high temperatures. Local: (713) 675-6324 Chemical Chart is reprinted from 1996 RMA Hose Handbook 8 National: (800) 231-0734 ## **OIL & GASOLINE RESISTANCE** Rubber hose is used to convey petroleum products both in the crude and refined stages. The aromatic content of refined gasoline is often adjusted to control the octane rating. The presence of aromatic hydrocarbons in this fuel generally has a greater effect on rubber components than do aliphatic hydrocarbons. Aromatic materials in contact with rubber tend to soften it and reduce its physical properties. For long lasting service, the buyer of gasoline hose should inform the hose manufacturer of the aromatic content of the fuel to be handled so that the proper tube compound can be recommended for the specific application. The effects of oil on rubber depend on a number of factors that include the type of rubber compound, the composition of the oil, the temperature and time of exposure. Rubber compounds can be classified as to their degree of oil resistance based on their physical properties after exposure to a standard test fluid. In this RMA classification, the rubber samples are immersed in IRM 903 oil at 100°C for 70 hours. (See ASTM Method D-471 for a detailed description of the oil and the testing procedure.) As a guide to the user of hose in contact with oil, the oil resistance classes and a corresponding description are listed. | PHYSICAL PROPERTIES AFTER EXPOSURE TO OIL: | | | |--|---------|----------| | | VOLUME | TENSILE | | | CHANGE | STRENGTH | | | MAXIMUM | RETAINED | | | | | | CLASS A | (HIGH OIL RESISTANCE) | +25% | 80% | |---------|------------------------------|------|-----| | CLASS B | (MEDIUM/HIGH OIL RESISTANCE) | +65% | 50% | | CLASS C | (MEDIUM OIL RESISTANCE) | +100% | 40% | |---------|-------------------------|-------|-----| | | | | | ## CHEMICAL RECOMMENDATIONS The materials being handled by flexible rubber hose are constantly increasing in number and diversity. To assist in the selection of the proper elastomer for the service conditions encountered, the following table has been prepared. The reader is cautioned that it is only a guide and should be used as such, as the degree of resistance of an elastomer with a particular fluid depends upon such variables as temperature, concentration, pressure, velocity of flow, duration of exposure, aeration, stability of the fluid, etc. Also variations in elastomer types and special compounding of stocks to meet specific service conditions have considerable influence on the results obtained. When in doubt, it is always advisable to test the tube compound under actual service conditions. If this is not practical, tests should be devised that simulate service conditions or the hose manufacturer contacted for Recommendations. The following table lists the more commonly used materials, chemicals, solvents, oils, etc. The recommendation are based on room temperature and pressure conditions normally recommended for the particular type of hose being used. Where conditions beyond this can be met readily, they have been so indicated; where conditions are not normal and cannot be readily met, the hose manufacturer should always be consulted. The table does not imply conformance to the Food & Drug Administration requirements of Federal or State Laws when handling food products. #### TABLE OF CHEMICAL, OIL & SOLVENT RESISTANCE OF HOSE: **WARNING:** The following data has been compiled from generally available sources and should not be relied upon without consulting and following the hose manufacturer's specific chemical recommendations. Neglecting to do so might result in failure of the hose to fulfill its intended purpose, and may result in possible damage to property and serious bodily injury. #### **RESISTANCE RATING** - A Good Resistance, usually suitable for service. - **F** Fair Resistance, the chemical has some deteriorative effects, but the elastomer is still adequate for moderate service. - **C-** Depends on Condition, moderate service may be possible if chemical exposure is limited or infrequent. - **X-**Not recommended, unsuitable for service. - I Insufficient Information, not enough data available at the time of publication to determine rating. ## **RELASTOMERS/PLASTICS** NR- Natural Rubber IR - Isoprene, synthetic SPR Styrono butadion **SBR -** Styrene-butadiene **CR-**Chloroprene **NBR -** Nitrile-butadiene **IIR-**Isobutene-isoprene **CSM -** Chloro-sulfonyl-polyethylene EPDM - Ethylene-propylenediene-terpolymer MQ - Dimethyl-polysiloxane FKM-Fluoracarbon rubber **CM** - Chloro-polyethylene **ECO/CO**-Ephichlorohydrin **EXLPE**- Chloro-sulfonvl- polyethylene Local: (713) 675-6324 9 National: (800) 231-0734 # **TECHNICAL DATA** ## ELASTOMERS | commonly used Elastomers: | | | | Special Elastomers: | | | | | | | | | | |--------------------------------------|-----------------|-----|---------|---------------------|--------|----------|----------|---------|---------|----------|-----------|----|--| | MATERIAL | NR
lor
IR | SBR | CR | NBR | IIR | CSM | EPDM | MQ | FKM | СМ | ECO
CO | XL | | | | | (1 | Maximur | n Tempe | rature | 100° F (| 38°C) Un | less Ot | herwise | Specific | ed | | | | Acetic Acid, Dilute, 10% | F | С | С | С | Α | С | А | Α | X | Α | F | 1 | | | Glacial | С | X | X | X | F | С | F | F | Χ | Α | X | 1 | | | Anhydride | С | С | F | F | F | Α | 1 | С | Χ | Α | X | | | | Acetone | Α | Α | F | X | Α | F | Α | Α | X | Α | X | | | | Acetylene | Α | А | F | Α | Α | F | Α | С | А | - 1 | 1 | | | | Air 150°F (65°C) | Α | Α | Α | Α | Α | Α | А | Α | | Α | Α | | | | Aluminum Chloride 150°F (65°C) | Α | Α | Α | Α | Α | Α | А | Α | А | Α | А | | | | Aluminum Fluoride 150°F (65°C) | Α | Α | Α | Α | Α | Α | Α | F | | | A | , | | | Aluminum Sulfate 150°F (65°C) | Α | Α | Α | Α | Α | Α | Α | Α | Α | Α | l I | | | | Alums 150°F (65°C) | A | A | A | A | A | A | A | A | | A | l | , | | | Ammonia Gas | A | A | A | A | A | A | A | A | X | A | 1 | , | | | Ammonium Chloride Ammonium Hydroxide | A
C | A | A
F | A
F | A | A | A | C | A | A | A | | | | Ammonium Hydroxide Ammonium Nitrate | A | A | A | A | A | A | A | A | A | I | A | | | | Ammonium Phosphate, monobasic | A | A | A | A | A | A | A | A | | A | A | | | | dibasic | A | A | A | A | A | A | A | A | | I | | , | | | tribasic | A | A | A | A | A | A | A | A | | · | <u>'</u> | | | | Ammonium Sulfate | A | A | Α | A | Α | Α | A | Α | Α | A | i | | | | Amyl Acetate | F | X | X | X | F | X | Α | Α | X | C | X | | | | 7 iii.yi 7 ioo iii.o | | | ,, | 7. | • | | 7. | , , | , , | | ,, | | | | Amyl Alcohol | А | Α | Α | А | Α | Α | Α | Α | А | А | Α | | | | Aniline, Aniline Oil | Х | X | С | X | Α | Х | С | С | Α | С | X | | | | Aniline Dyes | F | F | F | F | Α | F | С | С | | | I | | | | Asphalt | Х | Х | F | F | Χ | F | Х | | А | | Α |) | | | Barium Chloride 150°F (65°C) | А | А | Α | А | Α | А | А | Α | Α | А | А | | | | 4505 (6500) | ٨ | ٨ | Δ. | ٨ | Δ. | Δ. | • | Δ. | • | ٨ | ۸ | | | | Barium Hydroxide 150°F (65°C) | A | A | A | A | A | A | A | A | A | Α | Α | , | | | Barium Sulfide 150°F (65°C) | A | A | A | A | A | A | A | A | A | I | A | | | | Beer Beet Sugar Liguors | A | A | A | A | A | A | A
A | A | A | 1 | A | , | | | Benzene, Benzol | X | X | X | C | X | X | X | C | A | С | X | | | | Belizelle, Belizui | ^ | ^ | ^ | C | ^ | ^ | ^ | C | A | C | ^ | , | | | Benzine, petroleum ether and | | | | | | | | | | | | | | | Benzine, petroleum naphtha | Х | Х | С | F | Χ | F | Х | С | Α | | I | | | | Black Sulfate Liquor | Α | Α | Α | Α | Α | Α | Α | Α | | - 1 | - 1 | | | | Blast Furnace Gas | С | С | Α | С | С | С | С | С | А | I | I | | | | Borax | А | Α | Α | Α | Α | Α | А | Α | А | I | - 1 | 1 | | | | | | | | | | | | | | | | | | Boric Acid | Α | Α | Α | Α | Α | Α | А | Α | Α | 1 | А | 1 | | | Bromine | Х | Х | X | X | Χ | С | Χ | F | Α | С | | | | | Butane | X | X | F | Α | Χ | Α | X | Α | А | Α | Α | | | | Butyl Acetate | С | X | Χ | X | F | Χ | F | Α | X | F | Χ | , | | | Butyl alcohol, butanol | Α | А | Α | Α | Α | А | Α | Α | Α | F | 1 | 1 | | | Calcium bisulfate | С | С | Α | Α | F | Α | F | С | Α | Α | I | , | | | Calcium chloride | Α | Α | Α | Α | Α | Α | Α | Α | Α | Α | Α | | | | Calcium hydroxide | A | A | A | A | Α | A | Α | A | Α | Α | A | | | | Calcium hypochlorite | X | X | X | X | Α | F | A | С | А | Α | F | | | | Caliche liquors | A | A | A | A | A | A | A | | | | I | / | | | Cane sugar liquors | Α | Α | Α | Α | Α | Α | Α | Α | Α | Α | Α | / | | ## Chart is reprinted from 1996 RMA Hose Handbook ## **ELASTOMERS** | Commonly used Elastomers: | | | | | | | Special Elastomers: | | | | | | | | | |-------------------------------|-----------------|--------|--------|--------|----------|-----------|---------------------|--------|----------|----------|-----------|-----|--|--|--| | MATERIAL | NR
lor
IR | SBR | CR | NBR | IIR | CSM | EPDM | MQ | FKM | СМ | ECO
CO | XL | | | | | | | (Ma | aximum | Temper | ature 1 | 00° F (38 | °C) Unle | ss Oth | erwise S | pecified | i | | | | | | Carbon dioxide, dry/wet | А | А | Α | Α | Α | А | Α | Α | Α | Α | Α | 1 | | | | | Carbon disulfide | Х | Х | X | Χ | Χ | Χ | Χ | С | Α | С | | (| | | | | Carbon monoxide 150°C (65°C) | С | С | С | С | С | F | С | Α | Α | - 1 | | 1 | | | | | Ondere transchile da | V | V | V | 0 | V | | V | 0 | ٥ | 0 | _ | | | | | | Carbon tetrachloride | X | X | X | С | X | X | X | С | A | С | F | 1 | | | | | Castor oil Cellosolve acetate | A
F | A
F | A
X | A
X | A | А | A | A
C | A
C | А | Α | , | | | | | Cellosolve acetate CFC-12 | X | X | A | A | A
F | | F | X | A | | A | , | | | | | China wood oil, tung oil | X | X | F | A | A | F | A | A | C | | 1 | 1 | | | | | Chlorine, dry/wet | X | X | X | X | X | X | X | X | С | X | X | , , | | | | | Cinornie, dry/wet | | Α | ^ | Λ | ^ | Α | Λ | ^ | C | ^ | | ' | | | | | Chlorinated solvents | X | Χ | Χ | Χ | Χ | Χ | Χ | С | С | С | | 1 | | | | | Chloroacetic acid | Х | С | С | С | Х | Α | ı | С | X | | | , | | | | | Chlorosulfonic acid | X | X | С | С | Χ | X | X | С | X | | | | | | | | Chromic acid | Х | X | Χ | X | С | Α | 1 | С | С | Α | | | | | | | Citric acid | А | Α | Α | F | Α | Α | А | Α | А | Α | Α | 1 | Coke oven gas | С | С | С | С | С | Α | | Α | X | Α | X | (| | | | | Copper chloride 150°F (65°C) | С | Α | F | Α | Α | F | Α | Α | Α | Α | - 1 | - | | | | | Copper sulfate 150°F (65°C) | С | А | Α | Α | F | А | Α | Α | Α | Α | Α | 1 | | | | | Corn oil | X | С | F | Α | Α | F | С | Α | Α | А | Α | / | | | | | Cottonseed oil | X | С | F | Α | Α | F | С | Α | А | Α | I | 1 | | | | | Crossets and tor | V | Χ | г | Α | Χ | F | V | С | F | | X | | | | | | Creosote, coal tar Wood | X | X | F
F | A | X | Г | X | С | A | | ^ | , | | | | | Creosols, cresylic acid | C | X | X | C | C | F | X | С | A | F | | / | | | | | Ethers | С | C | C | С | С | F | X | С | X | A | | , | | | | | Ethyl acetate | F | X | X | X | F | X | F | F | X | F | Χ | / | | | | | Emy addiate | | 7. | ,, | ,, | • | , , | • | • | | | | , | | | | | Ethyl alcohol | Α | Α | Α | Α | Α | Α | А | Α | А | Α | Α | 1 | | | | | Ethyl cellulose | F | F | F | F | F | | F | С | X | F | | , | | | | | Ethyl chloride | А | F | F | X | Α | F | Α | С | F | F | F | I | | | | | Ethylene glycol | А | А | Α | А | Α | А | Α | Α | Α | Α | Α | - | | | | | Ferric chloride 150°F (65°C) | А | Α | Α | Α | Α | А | Α | Α | I | Α | А | 1 | | | | | Ferric Sulfate 150°F (65°C) | Α | Α | Α | Α | Α | Α | Α | Α | Α | Α | Α | | | | | | Formaldehyde | А | А | С | А | Α | А | Α | Α | Α | А | F | 1 | | | | | Formic acid | Α | Α | С | F | Α | Α | Α | Α | X | Α | F | | | | | | Fuel oil | X | Χ | Α | Α | Χ | F | Χ | С | А | F | Α | , | | | | | Furfural | X | С | С | X | A | F | С | С | X | A | X | , | | | | | Gasoline, Non Leaded | X | X | X | A | X | X | X | | Α | С | Α | , | | | | | Gasoline, + MTBE | X | X | X | Α | X | X | X | С | Α | С | Α | , | | | | | Hi-test-+ MTBE | X | X | X | A | X | X | X | С | A | С | A | 1 | | | | | Gelatin | А | Α | Α | Α | Α | Α | Α | Α | Α | | Α | , | | | | | Glucose | А | А | А | А | А | А | Α | А | А | | А | , | | | | | Glue | F | F | A | A | F | A | A | A | C | | A | , | | | | | Glycerine, glycerol | A | A | A | A | A | A | A | A | A | Α | A | / | | | | | 31733111313173317 | , (| | , (| , , | / \ | , (| , , | / \ | 7. | , (| 7. | | | | | | Green sulfate liquor | Α | Α | Α | Α | Α | Α | Α | Α | Α | Α | Α | 1 | | | | Local: (713) 675-6324 10 National: (800) 231-0734 Local: (713) 675-6324 11 National: (800) 231-0734 # **TECHNICAL DATA** ## ELASTOMERS Local: (713) 675-6324 | Commonly used Elastomers: | | | | | | | | Special Elastomers: | | | | | | | | | |-----------------------------------|-----------------|--------|----------|---------|--------|-----------|----------|---------------------|---------|----------|-----------|-------|--|--|--|--| | MATERIAL | NR
lor
IR | SBR | CR | NBR | IIR | CSM | EPDM | MQ | FKM | СМ | ECO
CO | XLF | | | | | | | | (1) | /laximur | n Tempe | rature | 100° F (3 | 88°C) Un | less Ot | herwise | Specifie | ed | | | | | | | Hydraulic fluids | | | | | | | | | | | | | | | | | | Petroleum | X | X | Α | Α | Χ | F | Χ | | | Α | Α | | | | | | | Phosphate ester alkyl | Χ | X | С | X | Α | X | Α | | | Α | X | | | | | | | Phosphate ester arly | Χ | X | X | X | С | X | С | _ | | С | X | | | | | | | Phosphate ester blends | | X | X | X | X | X | X | С | | | С | X | | | | | | Silicate ester | Χ | Χ | С | С | Х | С | X | | | С | С | | | | | | | Water-Glycol | А | Α | А | Α | А | А | Α | | А | Α | Α | | | | | | | Hydrobromic acid | С | X | С | С | Α | Α | А | С | А | Α | | - 1 | | | | | | Hydrochloric acid | Α | Χ | Χ | X | С | С | С | С | Α | Α | X | F | | | | | | Hydrocyanic acid | F | F | С | F | С | Α | С | Α | Α | | | F | | | | | | Hydrofluoric acid | Χ | Χ | Χ | Χ | С | А | С | Χ | А | Α | | F | | | | | | Hydrofluosilicic acid | А | F | F | F | А | | А | А | А | А | | | | | | | | Hydrogen Gas | F | F | A | A | A | | A | A | A | A | А | - | | | | | | Hydrogen peroxide | X | Х | C | C | C | С | C | A | A | Α | A | ,
 | | | | | | Hydrogen sulfide, dry | C | C | F | С | A | A | A | C | F | | | / | | | | | | wet | С | С | F | С | Α | A | A | С | C | | F | A | Kerosene | X | X | F | Α | Χ | С | X | С | Α | А | Α | A | | | | | | Lacquers | X | X | X | X | С | Χ | Χ | | X | | X | F | | | | | | Lacquers solvents | Χ | X | Χ | X | С | Χ | Χ | | X | | X | F | | | | | | Lactic acid | С | С | С | С | С | Α | С | Α | Α | | | A | | | | | | Linseed oil | С | Χ | F | Α | Α | А | А | А | А | Α | А | A | | | | | | Lubricating oil, crude | Χ | Χ | F | Α | Χ | С | X | С | А | | Α | A | | | | | | refined | X | X | F | A | X | С | X | С | , , | Α | Α | / | | | | | | lagnesium chloride 150°F (65°C) | Α | Α | Α | Α | Α | Α | Α | Α | Α | Α | Α | - | | | | | | lagnesium hydroxide 150°F (65°C) | Α | F | F | F | Α | Α | А | F | Α | Α | Α | / | | | | | | lagnesium sulfate 150°F (65°C) | А | Α | Α | Α | Α | А | Α | Α | А | Α | Α | 1 | | | | | | | _ | _ | | _ | | | | | | | | | | | | | | Mercuric chloride | F | F | С | F | Α | A | Α | Α | Α | | Α | 1 | | | | | | Mercury Methyl alcohol, methanol | A | A | A | A | A | A | A
A | A | A
C | ۸ | A
F | , A | | | | | | Methyl chloride | C | C | C | C | C | X | C | X | A | Α | F | F | | | | | | Methyl ethly ketone | X | X | X | X | F | C | A | C | X | С | Χ | , , , | | | | | | welligh entity ketone | ^ | ^ | | ^ | ' | C | | C | X | C | ^ | / | | | | | | Methyl isopropyl ketone | Χ | Χ | Χ | Χ | F | С | С | С | Χ | F | Χ | 1 | | | | | | MTBE | | | | | | | | | | | | - | | | | | | Milk | С | С | F | F | Α | А | А | Α | А | Α | Α | A | | | | | | Mineral oils | Χ | С | F | Α | Χ | F | Χ | Α | Α | Α | Α | A | | | | | | Natural gas | С | С | Α | Α | С | Α | X | С | Α | А | Α | F | | | | | | Nickel chloride 150°F (65°C) | Α | Α | Α | Α | Α | Α | Α | Α | Α | Α | I | A | | | | | | Nickel sulfate 150°F (65°C) | Α | Α | А | Α | Α | А | Α | Α | Α | Α | I | A | | | | | | Nitric acid, crude | X | X | X | X | С | С | X | X | С | Α | Χ | F | | | | | | Diluted 10% | X | X | С | X | С | С | X | X | С | A | X | F | | | | | | Concentrated 70% | X | X | X | X | С | C | X | X | С | X | X | F | | | | | | Nitrobenzene | X | X | X | X | X | X | X | С | F | С | Χ | A | | | | | | Oleic acid Oleum spirits | X | F
C | C | F
C | F | F | F | Α | C | Α | | A | | | | | # Chart is reprinted from 1996 RMA Hose Handbook 12 ## **ELASTOMERS** | Commonly used Elastomers: | | Special Elastom | | | | | | | | | | ners: | | | |-------------------------------------|-----------------|-----------------|--------|--------|---------|----------------|----------------|---------|----------|----------------|-----------|-------|--|--| | MATERIAL | NR
lor
IR | SBR | CR | NBR | IIR | CSM | EPDM | MQ | FKM | СМ | ECO
CO | XL | | | | | | (Ma | aximum | Temper | ature 1 | □
00° F (38 | □
B°C) Unle | ess Oth | erwise S | i
Specified | i | | | | | Oxalic acid | F | С | F | F | А | Α | А | Α | Α | Α | F | - | | | | Oxygen | F | С | Α | С | Α | | Α | Α | Α | Α | F | A | | | | Palmitic acid | X | F | Α | А | F | F | F | С | А | Α | F | / | | | | Perchlorethylene | Х | X | X | С | X | Χ | X | С | Α | С | F | | | | | troleum oils and crude 200°F (95°C) | X | Χ | F | Α | X | С | X | С | Α | С | F | 1 | | | | Phosphoric acid, crude | Α | С | С | С | С | Α | С | С | Α | Α | | | | | | pure 45% | А | С | С | С | С | Α | С | С | Α | Α | | | | | | Picric acid, molten | С | С | С | С | С | | I | | | | | | | | | water solution | А | С | F | F | А | А | 1 | А | А | | | | | | | Potassium chloride | Α | A | A | A | A | Α | A | Α | Α | А | А | | | | | Potassium cyanide | A | A | A | A | A | A | A | A | A | A | A | | | | | Potassium hydroxide | F | F | C | C | A | A | A | A | C | A | A | | | | | Potassium sulfate | A | A | A | A | A | A | A | A | A | A | A | | | | | | | | _ | | | _ | | | | • | | | | | | Propane | X | X | F | Α | X | F | X | Α | Α | Α | A | | | | | Sewage | С | С | F | Α | С | Α | С | С | Α | | - 1 | | | | | Soap solutions | Α | Α | F | Α | Α | Α | Α | Α | Α | Α | Α | | | | | Soda ash, sodium carbonate | Α | А | Α | А | Α | Α | Α | Α | Α | Α | Α | | | | | Sodium bicarbonate, baking soda | А | А | Α | А | А | А | А | А | А | А | Α | | | | | Sodium bisulfate | А | А | А | А | Α | А | А | Α | А | Α | Α | | | | | Sodium chloride | Α | Α | Α | Α | Α | Α | Α | Α | Α | Α | Α | | | | | Sodium cyanide | Α | А | Α | Α | Α | Α | Α | Α | Α | Α | Α | | | | | Sodium hydroxide | F | F | С | С | Α | С | Α | Α | С | Α | F | | | | | Sodium hypochlorite | X | Χ | Χ | Χ | Α | F | А | С | А | Α | F | | | | | Sodium metaphosphate | А | А | С | А | А | F | А | А | А | А | - 1 | | | | | Sodium nitrate | С | С | С | С | Α | Α | Α | С | | Α | Α | | | | | Sodium perborate | С | С | С | С | Α | Α | Α | Α | Α | | | | | | | Sodium peroxide | С | С | С | С | Α | Α | А | С | Α | | | | | | | Sodium phosphate.monobasic | А | F | С | F | А | А | А | А | А | А | | | | | | dibasic | А | F | С | F | А | Α | А | А | | | | | | | | tribasic | Α | F | С | F | Α | Α | Α | Α | | | | | | | | Sodium silicate | А | Α | Α | Α | Α | Α | Α | Α | Α | Α | - 1 | | | | | Sodium sulfate | Α | Α | Α | Α | Α | Α | Α | Α | Α | А | А | | | | | Sodium sulfide | А | А | Α | А | А | А | А | А | А | Α | - 1 | | | | | Sodium thiosulfate, "hypo" | А | А | Α | А | А | А | А | А | А | А | 1 | | | | | Soybean oil | X | C | F | A | A | A | A | A | A | A | A | | | | | Stannic chloride | A | A | A | A | F | A | F | A | A | A | Ī | | | | | Steam 450°F (230°C) | C | C | C | C | A | A | F | C | X | | X | | | | | Stearic acid | X | X | С | F | F | C | F | A | ^
 | | F | | | | | Sulfur | F | F | A | F | A | A | A | F | A | | F | | | | | Sulfur chloride | X | X | C | С | X | A | X | С | A | | 1 | | | | | Sulfur dioxide , dry | C | C | С | С | C | A | C | A | A | | ı | | | | | Sulfur trioxide, dry | X | С | С | С | С | F | С | A | A | | 1 | | | | | Sulfuric acid, 10% | A | A | A | A | A | A | A | A | A | Α | Α | | | | National: (800) 231-0734 Local: (713) 675-6324 13 National: (800) 231-0734 ## **ELASTOMERS** | Commonly used Elasto | omers: | | | | | | Special Elastomers: | | | | | | | | |----------------------|--------------|-----------------|-----|----------------------|-----------------|-----|---------------------|-----------------|--------------------|-----------|--------------|-------------|----------|--| | MATERIA | L | NR
lor
IR | SBR | CR | NBR | IIR | CSM | EPDM | MQ | FKM | СМ | ECO
CO | XLPI | | | | | | | | ım Tempe | | 100° F (| | | erwise | Specifie | | | | | 11%-75% | | С | С | С | С | F | Α | С | С | А | А | F | Α | | | 76%-95% | | X | Χ | Χ | Х | С | Α | Χ | X | Α | X | X | Α | | | fuming | | X | Χ | Χ | X | Χ | X | X | Χ | Χ | Χ | Χ | Χ | | | Sulfurous a | | С | С | С | С | С | Α | С | С | Α | Α | С | Α | | | Tannic ac | id | А | С | Α | С | Α | А | А | А | А | А | I | Α | | | Tar | | Χ | Χ | С | С | X | С | X | С | F | | F | X | | | Tartaric ac | id | A | C | С | С | F | A | F | A | A | Α | F | A | | | Toluene, to | | X | X | X | С | X | X | X | C | Α | C | X | Α | | | Trichloroethy | | Х | Χ | X | X | Х | X | X | С | Α | С | X | Α | | | Turpentin | | Χ | Χ | X | F | Χ | Χ | X | С | Α | F | Α | Α | | | | | | | | | | | | | | | | | | | Vinegar | | С | С | С | С | Α | Α | Α | Α | Α | Α | | Α | | | Water, acid r | | A | A | С | A | A | A | A | A | A | A | I | A | | | Water, fres | sh | A | A | С | A | Α | Α | A | A | Α | Α | Α | Α | | | distilled | | A | A | С | A | A | A | A | A | A | A | A | A | | | Whiskey and | wines | А | Α | А | С | А | А | А | А | Α | А | ı | А | | | Xylene.xyl | ol | X | Χ | X | С | Χ | Χ | X | С | А | Χ | Χ | А | | | Zinc chloride | | С | С | С | С | Α | Α | А | Α | Α | Α | I | Α | | | Zinc sulfa | te | А | Α | А | А | А | А | А | А | А | А | I | Α | | | DZZLES - SPECS | | | | | | | | | | | | | | | | Nozzle Style & | | Inlet
PSI | | ssure
PA | Straight
GPM | | ream
IPM | 30 GPM | 30 IPM | 60
GPN | 60
// IPM | 90
GPM | 90
IP | | | • | | 50 | | 45 | 18 | | 68 | 21 | 79 | 24 | 91 | 27 | 10 | | | 10464 | | 75 | | 17 | 22 | | 83 | 25 | 95 | 28 | 106 | 32 | 12 | | | 1" | | 100 | 690 | | 24 | | 91 | 28 | 106 | 32 | 121 | 36 | 13 | | | | | 50 | 345 | | 45 | | 170 | 50 | 189 | 55 | 208 | 60 | 22 | | | 10464 | | 75 | 5 | 17 | 50 | | 189 | 55 | 208 | 65 | 246 | 75 | 28 | | | 1-1/2" | | 100 | 690 | | 55 | | 208 | 60 | 227 | 75 | 284 | 85 | 32 | | | | | 50 | 3 | 45 | 90 | | 341 | 120 | 454 | 130 | 492 | 145 | 54 | | | 10464 | | 75 | | 17 | 100 | | 379 | 140 | 530 | 150 | | 180 | 68 | | | 2-1/2" | | 100 | 6 | 90 | 110 | . | 416 | 165 | 625 | 180 | 681 | 205 | 77 | | | | | | | Threa | ds Per Ir | nch | | | | | | | | | | 1-1/2" Size | 2.100 (N | YFD) | | 1.990 (NST) 2.093 (N | | | | | CORP) 1.878 (NPSH) | | | | | | | | | | | Threa | ds Per Ir | nch | | | | | | | | | | | 6" | | | 7" | | | | 7-1/2" | 8" | | | | | | | | 3.058 | | | ; | 3.13 | | | 2.990 (CHICAGO) | | | | 062 | | | | | 3.093 | | | | | | | 3.062 (NS | | 3.093 | | | | | | | 3.125 | | | | | | 3.1 | 25 (DETR | OIT) | | | 140 | | | | | 3.156 | | | | | | | | | | | 156 | | | | 2-1/2" | 3.187 | | | | | | | | | | | 312 | | | | | 3.234 | | | | | | | | | | | (NYFD) | | | | | 3.250 | | | | | | | | | | 3.00 (N | | ') | | | | 3.312 | | | | | | | | | | | (NPSH) | | | | | 2 062 (DITTS | BLIDCH | | | | | | | | 1 2 | 70 (С) | -\ /E A N | D) | | 3.78 (CLEVELAND) 3.062 (PITTSBURGH)